The ethical dilemma of the robot teacher

The rise of automated teaching technologies

We need to talk about robots.

Specifically, we need to talk about the new generation of AI-driven teaching technologies now entering our schools. These include various ‘autonomous interactive robots’ developed for classroom use in Japan, Taiwan and South Korea. Alongside these physical robots, are the software-based ‘pedagogical agents’ that now provide millions of students withbespoke advice, support and guidance about their learning. Also popular are ‘recommender’ platforms, intelligent tutoring systems and other AI-driven adaptive tutoring – all designed to provide students with personalised planning, tracking, feedback and ‘nudges’. Capturing thousands of data-points for each of its students on a daily basis, vendors such as Knewton can now make a plausible claim to know more about any individual’s learning than their ‘real-life’ teacher ever could.

One of the obvious challenges thrown up by these innovations is the altered role of the human teacher. Such technologies are usually justified as a source of support for teachers, delivering insights that “will empower teachers to decide how best to marshal the various resources at their disposal”. Indeed, these systems, platforms and agents are designed to give learners their undivided attention, spending indefinitely more time interacting with an individual than a human teacher would be able. As a result, it is argued that these technologies can provide classroom teachers with detailed performance indictors and specific insights about their students. AI-driven technology can therefore direct teachers’ attention toward the most needy groups of students – acting as an ‘early warning system’ by pointing out students in most need of personal attention.

On one hand, this might sound like welcome assistance for over-worked teachers. After all, who would not welcome an extra pair of eyes and expert second opinion? Yet rearranging classroom dynamics along these lines prompt a number of questions about the ethics, values and morals of allowing decisions to be made by machines rather than humans. As has been made evident by recent AI-related controversies in healthcare, criminal justice and national elections, the algorithms that power these technologies are not neutral value-free confections. Any algorithm is the result of somebody deciding on a set of complex coded instructions and protocols to be repeatedly followed. Yet in an era of proprietary platforms and impenetrable coding, this logic typically remains imperceptible to most non-specialists. This is why non-specialist commentators sometimes apply the euphemism of ‘secret sauce’ when talking about the algorithms that drive popular search engines, news feeds and content recommendations. Something in these coded recipes seems to hit the spot, but only very few people are ‘in the know’ over the exact nature of these calculations.

This brings us to a crucial point in any consideration of how AI should be used in education.

If implementing an automated system entails following someone else’s logic then, by extension, this also means being subject to their values and politics.

Even the most innocuous logic of [IF X THEN Y] is not a neutral, value-free calculation. Any programmed action along these lines is based on pre-determined understandings of what X and Y is, and what their relation to each other might be. These understandings are shaped by the ideas, ideals and intentions of programmers, as well as the cultures and contexts that these programmers are situated within. So key questions to ask of any AI-driven teaching system include who is now being trusted to program the teaching? Most importantly, what are their values and ideas about education? In implementing any technological system, what choices and decisions are now being pre-programmed into our classrooms?

The ethical dilemma of robot teachers

The complexity of attempting to construct a computational model of any classroom context is echoed in the ‘Ethical Dilemma of the Self-Driving Car’. This test updates a 1960s’ thought experiment known as ‘the Trolley Dilemma’ which posed a simple question: would you deliberately divert a runaway tram to kill one person rather than the five unsuspecting people it is currently hurtling toward? The updated test – popularised by MIT’s ‘Moral Machine’ project – explores human perspectives on the moral judgements made by the machine intelligence underpinning self-driving cars. These hypothetic scenarios involve a self-driving car that is imminently going to crash through a pedestrian crossing. The car can decide to carry on the same side of the road or veer onto an adjacent lane and plough into a different group of pedestrians. Sometimes another option allows the car to self-abort by deciding to swerve into a barrier and sacrifice its passengers.

Unsurprisingly, this third option is very rarely selected by respondents. Few people seem prepared to ride in a driverless car that is programmed to value the lives of others above their own. Instead, people usually prefer to choose one group of bystanders over the other. Contrasting choices in the test might include hitting a homeless man as opposed to a pregnant woman, an overweight teenager or a healthy older couple. These scenarios are complicated further by considering which of these pedestrians is crossing on a green light or jaywalking. These are extreme scenarios, yet neatly illustrate the value-laden nature of any ‘autonomous’ decision. Every machine-based action has consequences and side-effects for sets of ‘users’ and ‘non-users’ alike. Some people gets to benefit from automated decision-making more than others, even when the dilemma relates to more mundane decisions implicit in the day-to-day life of the classroom.

So what might an educational equivalent of this dilemma be? What might the ‘Ethical Dilemma of the Robot Teacher’ look like? Here we might imagine a number of scenarios addressing the question: ‘Which students does the automated system direct the classroom teacher to help?’. For example,

who does the automated system tell the teacher to help first – the struggling girl who rarely attends school and is predicted to fail, or a high-flying ‘top of the class’ boy?

Alternately, what logic should lie behind deciding whether to direct the teacher toward a group of students who are clearly coasting on a particular task, or else a solitary student who seems to be excelling. What if this latter student is in floods of tears? Perhaps there needs to be a third option focused on the well-being of the teacher. For example, what if the teacher decides to ignore her students for once, and instead grab a moment to summon some extra energy?

#1 Who should the robot help next?

#2 Who should the robot help next?

The limits of automated calculations in education

Even these over-simplified scenarios involve deceptively challenging choices, quickly pointing to the complexity of classroom work. Tellingly, most teachers quickly get frustrated when asked to engage in educational versions of the dilemma. Teachers complain that these scenarios seem insultingly simplistic. There are a range of other factors that one needs to know in order to make an informed decision. These might include students’ personalities and home lives, the sort of day that everyone has had so far, the nature of the learning task, the time of academic year, assessment priorities, and so on. In short, teachers quickly complain that their working lives are not this black-and-white, and that their professional decisions are actually based on a wealth of considerations.

This ethical dilemma is a good illustration of the skills and sensitivities that human teachers bring to the classroom setting. Conversely, all the factors that are not included in the dilemma point to the complexity of devising algorithms that might be considered appropriate for a real-life classroom. Of course, many system developers consider themselves well-capable of being able to provide sufficient measurement of thousands (if not millions) of different data-points to capture this complexity. Yet such confidence of quantification quickly diminishes in light of the intangible, ephemeral factors that teachers will often insist should be included in these hypothetical dilemmas. The specific student that a teacher opts to help at any one moment in a classroom can be a split-decision based on intuition, broader contextual knowledge about the individual, as well as a general ‘feel’ for what is going on in the class. There can be a host of counter-intuitive factors that prompt a teacher to go with their gut-feeling rather than what is considered to be professional ‘best practice’.

So, how much of this is it possible (let alone preferable) to attempt to measure and feed into any automated teaching process? A human teacher’s decision to act (or not) is based on professional knowledge and experience, as well as personal empathy and social awareness. Much of this might be intangible, unexplainable and spur-of-the-moment, leaving good teachers trusting their own judgement over what a training manual might suggest that they are ‘supposed’ to do. The ‘dilemmas’ just outlined reflect situations that any human teacher will encounter hundreds of time each day, with each response dependent on the nature of the immediate situation. What other teachers ‘should do’ in similar predicaments is unlikely to be something that can be written down, let alone codified into a set of rules for teaching technologies to follow. What a teacher decides to do in a classroom is often a matter of conscience rather than a matter of computation. These are very significant but incredibly difficult issues to be attempting to ‘engineer’. Developers of AI-driven education need to tread with care. Moreover, teachers need to be more confident in telling technologists what their products are not capable of doing.


The two ‘dilemma’ images were illustrated using graphics designed by Katemangostar / Freepik


Author: Neil Selwyn

Neil Selwyn is a Professor in the Faculty of Education, Monash University and previously Guest Professor at the University of Gothenburg. Neil’s research and teaching focuses on the place of digital media in everyday life, and the sociology of technology (non)use in educational settings.

@neil_selwyn is currently writing a book on the topic of robots, AI and the automation of teaching. Over the next six months he will be posting writing on the topic in various education blogs … hopefully resulting in:  Selwyn, N. (2019)  Should Robots Replace Teachers? Cambridge, Polity

AI and the medical expert of tomorrow

In my research I have addressed the consequences of the continuous shift and development of technologies in different work settings and what that means for the skills that we develop. For a number of years, our group have been heading interdisciplinary research initiatives in the medical area. This work encompasses radiologists, dentists, surgeons, radio-physicists and social scientists that jointly study the management of different technological advancements in medicine. We also design workplace-learning environments in which both experienced professionals and novices can develop and improve essential skills. The next step for us, is both to develop AI applications in these areas as well as scrutinising their adoption and their consequences for practice.

If we look at medicine and many other complex work settings, what we find today is an inherent dependence on various technological set-ups. Work proceeds, by necessity, through the incorporation and use of a vast array of technologies. Physical as well as digital. This has as a consequence, that when these tools and technologies change and develop, then the practitioners have to adapt and re-skill.

The general trend here is that tasks of lower complexity can be automated and taken over by technology. The more complex tasks however, have so far tended to require expert involvement. The more recent developments of AI for medicine can be seen as a continuation of a long trend. But it might also represent change on a different order of magnitude. In the near future we will most probably see systems extending and going beyond the current limits of possible performance. This will imply that the medical experts will take on new and even more advanced roles, as supervisors or developers of new forms of knowledge and inquiry.

Now, these are not new arguments. What I want to highlight here is an issue that I miss in the current discussion about how AI transforms work. When we promote the current workforce and let them take on more advanced tasks today, we do so given a pool of people who have undertaken a traditional training and who have become experts under certain conditions. And this is a long process. But these trajectories of becoming experts are themselves being shifted in these transformations. What will it mean to be knowledgeable or an expert radiologist in say 15-20 years from now? Surely something different from today. But how is an individual going to end up so knowledgeable about a professional domain when during training, a system can outperform her every move and diagnosis for years on end? How will we motivate people to keep training and to keep learning so that they will one day be able to contribute to the development of new knowledge?  

While I don’t think that this is an unsolvable problem, we need to start this discussion alongside whatever powerful systems we introduce into medical practice. Otherwise we might be getting a devil’s bargain, where we profit in the short term, whilst depleting the knowledge base in the long run.

Mässor och konferenser centrala när agendan sätts för skolans digitalisering

Konferenser, skolmässor och sociala medier beskrivs ofta som viktiga och demokratiska mötesplatser för skolan och för lärare. Enligt den bilden kan lärare där göra sina röster hörda, lyfta fram och diskutera relevanta pedagogiska frågor och dela framgångsrika undervisningskoncept och metoder. I en studie från Göteborgs universitet framställs en helt annan bild.

– Forum och event av denna typ skildras ofta som en ny typ av underifrån framväxande folkrörelse som genom mötesplatser kan påverka beslutsfattare och stärka lärarprofessionen, men vad event inom IT-området tillåter i form och utbyte för lärare och skolledare är väldigt begränsat och ensidigt, säger Catarina Player-Koro som tillsammans med Annika Bergviken Rensfeldt och Neil Selwyn står bakom studien.

Mässor, konferenser och sociala medier har för skolan fått ett allt större inflytande över policyfrågorna när det gäller digitalisering. Platser där privata och offentliga aktörer och intressen möts. Här framställer vinstdrivande IT- och utbildningsföretag, teknik- och infrastrukturleverantörer och skolaktörer digital teknik som lösning på ofta komplexa problem i skolan.

I studien har de båda forskarna använt IT-mässan SETT som ett exempel på event som fått stort genomslag. SETT utger sig själv för att vara ”Skandinaviens största mässa och konferens inom det moderna och innovativa lärandet” och arrangeras sedan 2011 årligen i Stockholm.
En rad olika aktörer som vinstdrivande IT- och utbildningsföretag, teknik- och infrastrukturleverantörer men även kommuner och fackförbund samarrangerar mässan. Internationellt finns motsvarande event som BETT, BETT Latin America, EdTechXAsi med flera.

I sin studie har forskarna följt mässan före, under och efter eventet, både genom att besöka eventet, intervjua lärare och analysera mässan i sociala media. Forskarnas huvudsakliga resultat är att SETT och liknande mässor bör ses som en del i ett globalt policynätverk där idéer, teknik och föreläsare av olika slag rör sig över olika länder och sammanhang och därigenom sätter agendan för skolans digitalisering. Ofta gör detta att agendan blir likriktad, ytlig, anpassad till kommersiella intressen snarare än pedagogiska.

– SETT-mässan är en del i en ny typ av policyprocess som vi ser internationellt och som drivs av en ekonomisk agenda. Det problematiska är att en betydande del av policyarbetet, riktat mot skolans innehåll, läroplan, resurser och teknik, sker utanför de vanliga demokratiska forumen för skolbeslut, som klassrum, skolor, kommuner och stat, säger Annika Bergviken Rensfeldt.

Studien beskriver detaljerat villkoren för mässdeltagarna och hur mässan erbjuder en tillrättalagd förmedling av budskap, med liten möjlighet utbyte av kunskap och information lärare emellan. Lärarna på plats har få möjligheter att göra sina röster hörda, att påverka, ifrågasätta eller på andra sätt uttrycka kritiska kommentarer eller inbjudas till längre diskussion. Lärarna på plats visar sig också ha svårt att uppfatta vem som är budbärare för budskapen och teknikföretag, apptillverkare, lärare och forskare kan ha lika stort inflytande över vad man anser värdefullt.

– Kravet om att all undervisning ska vila på vetenskaplig grund och beprövad erfarenhet blir i relation till detta omöjlig för lärare att bedöma och de uppfattar det som att mässan ska förmedla det som de förväntas göra i klassrummet, säger Catarina Player-Koro.

Istället för utbyte av kunskap och information erbjuds budskap i form av korta slogans som lösning på de komplexa utmaningar som finns inom utbildningssystemet. Såväl programmering som inkludering har sin plats, ”Programmering och kodning – tillgängligt för alla”, ”Förbättrade studieresultat”, ”Inkludering för invandrare”. Formen för detta är oftast starka berättelser om framgångsrika metoder och en marknadsplats för säljbara applikationer och metoder. Sällan framställs utmaningar och problem med digital teknik utifrån en skolvardag.

– Eftersom vi idag har öppnat skolan för både privata och offentliga intressen på olika sätt är det också viktigt att undersöka konsekvenserna av det. Om den här typen av IT-mässor är vad lärare erbjuds som fortbildning inom IT i skolan är det väldigt problematiskt. Samtidigt finns det en demokratisk potential i en mer öppen diskussion om IT i skolan, men då måste de offentliga intressena få ett större inflytande över vilka frågor som är viktiga för lärare och skolor, säger Catarina Player-Koro.

Catarina Player-Koro, Annika Bergviken Rensfeldt, Neil Selwyn

Läs artikeln Selling tech to teachers: education trade shows as policy events i Journal of Education Policy: http://www.tandfonline.com/doi/abs/10.1080/02680939.2017.1380232

 

How can EdTech help save the ocean?

Since the beginning of the industrialized revolution, human activities have had a growing negative impact on our planet. The ocean, covering more than 70% of Earth and providing goods and services our species depends upon, is not spared; increased temperature, acidity, destruction of large marine habitats, etc. In other words, our everyday behaviors (e.g., what we eat, how we travel, what we buy) impact the ocean and humans are so dependent on the marine environment that destroying it results in threatening our own survival and the survival of the ocean’s inhabitants.

Fortsätt läsa ”How can EdTech help save the ocean?”

Träning av icke-tekniska färdigheter i simulatormiljö: Hur går det till i praktiken?

Inom professionsutbildningar med höga krav på säkerhet, så som sjukvårdsutbildning, pilotutbildning och sjöfartsutbildning, sker idag träning och bedömning allt oftare i simulator-baserade lärmiljöer. För att säkerställa att framtida sjökaptener är kompetenta och kan agera säkert regleras dagens sjöfartsutbildning av internationella konventioner som anger kraven för olika fartygsbehörigheter och certifikat. Dessa regelverk betonar allt mer vikten av att träna och certifiera såväl tekniska som så kallade icke-tekniska färdigheter. Det är idag både omtvistat och osäkert hur färdigheter som anses vara icke-tekniska ska tränas och bedömas i simulatorträning.

Copyright KONGSBERG Group, used with permission from KONGSBERG Group.

Fortsätt läsa ”Träning av icke-tekniska färdigheter i simulatormiljö: Hur går det till i praktiken?”

Programmering på schemat (igen) – hur gick det till?

Sedan mars i år finns programmering inskriven i skolans läroplan. Det har lett till febril aktivitet i skolsverige där aktiviteterna nu är många för att omsätta detta till undervisning.

Införandet av programmering ingår i arbetet för en samlad nationell IT-strategi för skolväsendet. Programmeringens intåg gick snabbt och utmärktes av några avgörande händelser från 2013 och framåt. För oss policyforskare var det också en ovanlig, men dock inte unik process internationellt sett och för att få till stånd en utbildningspolicy för skolans digitalisering.

Fortsätt läsa ”Programmering på schemat (igen) – hur gick det till?”

#PopUpDig17 – A Research-led Conference on the Digitalization of Schools

On June 19th 2017, the Learning and IT group (GU_LIT) organized a conference on the digitalization of schools.  The day included two keynote speeches from internationally renowned researchers, a panel debate, a series of workshops that dealt with the topic from many different points of view, and an EdCamp.

IMG_5503 IMG_5518

Fortsätt läsa ”#PopUpDig17 – A Research-led Conference on the Digitalization of Schools”

Computer programming in schools… Can we avoid coding ourselves into a corner?

The push for Swedish schools to teach students to code computers is now in full swing. This year, the Swedish government announced key changes to its requirements for the teaching of ‘digital competence’ in schools. This shift includes provision for programming to be introduced at all grade levels, becoming “a distinct feature of several different subjects in primary schools, especially in technology and mathematics”.

Sweden is by no means alone in these ambitions. Indeed, countries around the world are rushing to introduce computer programming, coding and software development into the curriculum. Increasing numbers of teachers are being trained to teach computer science in primary and secondary classrooms. Well-funded organizations such as Code.Org and Code the Future are offering outside-school tuition and resources. There has been a surge of interest in low cost mini-computers such as the Micro:Bit and Raspberry Pi, alongside programming languages such as Scratch and Python. Coding has quickly become part of the global educational agenda.

UnitedSoybeanBoard (CC BY 2.0

Fortsätt läsa ”Computer programming in schools… Can we avoid coding ourselves into a corner?”

Algorithmic Accountability

Side A: A Speculative Vignette

It’s early Monday morning and Andrea is still feeling unpleasantly chilled from the commute to work. The October wind had been tearing at the cable car as they traversed the river. At the busy changeover to the trams, she was caught off guard by a sudden gust of wind and rain which showered her horizontally from top to toe. Her woollen coat is now damp and she can sense the ripe smell of sheep as she takes a seat in the large Hospital lecture hall.

Fortsätt läsa ”Algorithmic Accountability”

Three learning and IT themes from 2016

2016 has been a difficult year for many reasons. It has been marred by far more than its fair share of brutal tragedies and rude awakenings. For the field of learning and IT, the year has seen the crystallising of a number of central questions about the nature of learning in connected digital knowledge ecologies and the role IT has in schooling and other contexts of learning. Here are three…

Fortsätt läsa ”Three learning and IT themes from 2016”